Fully Automated PV Module Recycling Line

Zero-touch logistics. Defined material fractions. Minimal staffing.

  • 1 operator per shift thanks to robotics & automated detection
  • High purity fractions through clean separation and post-cleaning of the metal stream
  • 75–90 modules/hour for scalable PV integration


Get in Touch with Us

Recycling PV modules means: 

Separating the composite - not just shredding.  

PV modules are composite products made of glass, metals, polymers and cell materials. Without clean pre-separation, mixed fractions occur, leading to rework and unnecessary OPEX. The goal is a process that reduces handling, defines fractions, and makes PV as a material stream economically integrable into existing recycling infrastructures.

Mass vs. value in a PV module: hy Why clean fractions matter 

Glass is the largest share by mass — but the economic value lies in smaller material shares. That’s why pre-separation instead of shredding is the key to high purity fractions and better revenues.

“The numbers in brackets refer to layers (1–7) in the module structure shown on the left.”

Our solution: Fully automated PV module recycling line

 Here you can see how 2nd Cycle separates PV modules step by step into defined value fractions — by hovering/clicking on the stations.

Interaktives Layout der 2nd Cycle PV-Recyclinglinie
Tipp: Hover (Desktop) oder Klick/Tap (Mobile) auf die Punkte.
PV-Recyclinglinie – von Verbund zu Wertstofffraktionen

Diese interaktive Übersicht zeigt, wie 2nd Cycle PV-Module entlang der Materialgrenzen trennt – statt sie nur zu zerkleinern.

Das Ziel: Zero-Touch Handling, definierte Fraktionen und niedrige OPEX, damit PV als Stoffstrom wirtschaftlich in bestehende Recyclingprozesse integrierbar wird.

  • Prozessschritte: von Logistik (SolarBox) über Identifikation und Vortrennung bis zu Delamination-Pfaden
  • Output: Kabel/Anschlussdose, Aluminium, Verbund oder Laminat, hochreines PV-Glas
  • Skalierung: ausgelegt für hohen Durchsatz bei minimalem Personalaufwand

Hover/Klick auf die Punkte, um Details zu jeder Station zu sehen.

1) SolarBox – Logistiklösung (Zero-Touch)

Standardisierte Logistik ohne Einzelhandling – reduziert OPEX und macht Durchsatz planbar.

  • Weniger Personalaufwand und weniger Bruch durch Umsetzen
  • Automatisierte Übergabe in den Prozess
2) Modulvermessung

Automatische Format-/Lageerkennung – Mischchargen ohne Rüsten.

  • Stabile Greif- und Förderlogik
  • Weniger Stillstand, weniger Fehlgriffe
3) Typenschilderkennung

Identifikation (sofern vorhanden) für Prozesslogik & Dokumentation.

  • Reduziert manuelle Sortierung
  • Erhöht Rückverfolgbarkeit
4) Anschlussdosenentfernung

Frühe Separierung von Kabel/Dose – schützt Reinheit der nachgelagerten Fraktionen.

  • Kupferreicher Recyclingpfad
  • Weniger Störstoffe in Glas und Aluminium
5) Entrahmungsanlage

Reproduzierbare Abtrennung des Rahmens – Basis für hochwertigen Aluminiumstrom.

  • Entscheidend: Glasreste aus Profilnuten minimieren
  • Definierter Metallstrom statt Mischmaterial
6) Delamination – intakte Module

Fokus auf maximale Glasqualität + definierte Verbundfraktion.

  • Glas als hochwertiger Massenstrom
  • Laminat und Zellverbund separat
7) Delamination – gebrochene Module

Robuste Verarbeitung bei Scherben – trotzdem definierte Stoffströme.

  • Stabiler Betrieb auch bei gebrochenem Input
  • Minimiert Mischmaterial und Nacharbeit
8) Fraktion: Kabel und Anschlussdose

Kupferreicher Strom – bereit für klassisches Kabelrecycling.

  • Früh separiert für hohe Reinheit
  • Kompatibel mit etablierten Pfaden
9) Fraktion: Aluminium (glasarm)

Ausgelegt auf sehr geringe Glasverunreinigung – für hohe Handelsqualität.

  • Ziel: weniger als 1 Prozent Glasverunreinigung (projekt- und inputabhängig)
  • Bessere Vermarktung, weniger Abschläge
10) Verbundfraktion (Laminat)

Definierter Laminatstrom für nachgelagerte Verbundauftrennung / Spezialverwertung.

  • Encapsulant (EVA oder POE) plus Zellen plus Backsheet
  • Optional: Vertiefung mit 2nd Cycle Aggregaten
11) Hochreines PV-Glas

Glas als spezifizierter Output-Strom mit minimierten Restanhaftungen.

  • Größter Massenstrom als Wirtschaftlichkeitshebel
  • Saubere Trennung verbessert Verwertbarkeit und Erlös

Benefits at a glance

 High throughput -  scalable in operation

Designed for 75–90 modules/hour (depending on type & condition, approx. 2 t/hour) — ideal as an add-on for existing recyclers.

   Zero-touch / 1 operator per shift

Robotics + automated detection reduce manual interventions to monitoring and container exchange.

 High purity fractions - less rework​

 Defined material streams instead of mixed material: aluminium, glass, cables/junction box, laminate.

And that translates directly into economics

When automation works, you see it in unit costs - and in margin.  

High throughput, zero-touch operation and defined material fractions directly improve economics: OPEX per module (fixed + variable) decreases with higher utilization - and margin per module from secondary raw materials increases.  

Margin per PV module = revenues from secondary raw materials − OPEX per module (fixed + variable)

The acceptance fee is not included here and comes additionally on top of the margin.

The higher the utilization, the stronger the fixed-cost leverage: fixed operating costs are spread across more modules, which noticeably reduces OPEX per module. At the same time, process stability reduces rework and improves fraction quality — supporting the revenue side. The result: a margin that grows with utilization.

  • Fixed-cost leverage: more output → lower OPEX per module (fixed costs scale)
  • Zero-touch operation: stable staffing, fewer interventions, less downtime
  • Clean fractions: less rework → better offtake options 

Scaling effect vs. utilization:                      ​  ​

Illustration zur Veranschaulichung der Skalierung über 20–100% Auslastung.

Illustration to visualize scaling across 20–100% utilization (example).

100% = 2-shift operation ≈ 270,000 modules/year or ≈ 5,300 t/year

Dependent on input mix/BOM, energy & labor costs, shift model, line availability and revenue/offtake structure. Project-specific assumptions are provided upon request.

 

Contact us now & request a profitability calculation

All process steps in detail

SolarBox & logistics system — safely packed, intelligently transported

Secure transport is the foundation for every quality control, reuse, and high-quality recycling process:

Our specially designed reusable transport box protects PV modules on their way to the facility – compatible with robotic handling, stackable, and reusable. The first box specifically developed for 2nd life applications.

Explore the features of the SolarBox

 

Module Measurement – Length, Width, Position

There are almost as many PV module types as grains of sand – we automatically capture all relevant features:

Using modern 2D vision and robotics, we precisely measure the outer dimensions, cell layout, junction box position, label position and more — ensuring smooth line operation.

Nameplate Recognition – Automatically Identified

Where does the module come from? Which materials are built in? How much silver does it contain?

Our AI automatically reads nameplates – even when they are faded, dirty, or incomplete. This saves time and provides crucial parameters for recycling process control.

Junction box removal

The junction box is a key source of process disruption and contamination — that’s why we remove it automatically and in a controlled manner.

A precise, material-gentle process separates the box and cabling cleanly from the module, minimizes manual work and creates defined material streams for subsequent steps — efficient, repeatable, safe.


De-framing unit


The aluminium frame affects handling, process stability and fraction purity — that’s why we remove it automatically and in a controlled way.

A material-gentle separation process reliably removes the frame across different module types, reduces manual work and creates the foundation for clean material streams in downstream recycling — efficient, repeatable, safe.

Explore the de-framing unit

Delamination of broken PV modules

For broken PV modules, the focus is on process-stable separation despite glass breakage. The process is designed to reliably discharge glass and consistently separate the remaining composite stream—even with heterogeneous input mixes.

The outputs are defined fractions: glass as cullet and a separate composite stream (low-glass to largely glass-free, depending on input and configuration). Optional sorting/fine-cleaning can be added when higher purity requirements are needed.


Delamination of intact PV modules  

For intact PV modules, the goal is to separate the layers in a way that maximizes glass quality and yield. The process is designed for controlled, repeatable separation—avoiding unnecessary damage to the glass fraction.

The result is clearly defined material streams: a high-quality glass fraction (project- and input-dependent, either as full sheets or defined cullet) and a separate composite stream consisting of encapsulant/cell laminate and backsheet for downstream processing.